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Abstract

Pyrosequencing of small subunit ribosomal
RNA amplicons (pyrotags) is rapidly gaining
popularity as the method of choice for pro-
filing microbial communities because it pro-
vides deep coverage with low cost. However,
the large amount of data, and errors associ-
ated with the sequencing technology present
significant analytical challenges. Here we de-
scribe PyroTagger, a computational pipeline
for pyrotag analysis. The pipeline consists
of read quality filtering and length trimming,
dereplication, clustering at 97% sequence
identity, classification and dataset partition-
ing based on barcodes. To speed up the
rate-limiting clustering step we developed a
novel purpose-built algorithm called pyro-
clust. PyroTagger is highly scalable, capa-
ble of processing hundreds of thousands of
reads within minutes on a single CPU. Ver-
sion 1.0 is available for public use at http:
//pyrotagger.jgi-psf.org/.
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1 Introduction

One emerging application of pyrosequencing [1] is
microbial community profiling using small subunit
(SSU) rRNA gene PCR amplicons [2]. In this appli-
cation each read or pyrotag represents a member of
the community and analysis typically involves clus-
tering and classification to deduce community struc-
ture. Recently we and others demonstrated that
pyrosequencing errors, in particular homopolymer
length errors, can lead to inflated diversity estimates
[3, 4]. To avoid interpreting sequencing errors as
naturally occurring populations, we recommended
accuracy trimming of sequences to 0.2% per-base
error probability and clustering reads at a 97% se-
quence identity threshold [4]. The PCR also can in-
troduce base errors and more importantly, chimeras
of two or more DNA templates that need to be re-
moved using chimera detection software [5]. Here we
describe a fast, accurate pipeline for pyrotag clas-
sification called PyroTagger that implements these
recommendations.

2 Methods

PyroTagger requires 3 files to operate; correspond-
ing fasta and qual files from a 454 pyrosequencing
run and an associated mapping file that contains the
names and corresponding barcode-primer sequences
of the multiplexed samples. Several sets of these
files can be uploaded via web-interface if compar-
isons need to be made between runs. Compression
of large files is recommended to reduce upload times
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and network load. PyroTagger comprises the mod-
ules described below:

Input preprocessing. User-submitted files are
uncompressed and carriage return characters are re-
moved to ensure files are in UNIX format. Any am-
biguous (wobble) characters in barcode-primer se-
quences in the mapping file are disambiguated. Only
reads that exactly match disambiguated barcode-
primer sequences are retained in the corresponding
fasta and qual files.

Quality filtering. We have previously deter-
mined that stringent quality trimming reduces the
number of spurious phylotypes by removing pyrose-
quencing errors [4]. Originally we used LUCY [6] to
quality trim data to a 0.2% per-base error probabil-
ity (Phred value of 27.0) [4], but this end-trimming
program cannot remove low quality bases in oth-
erwise high-quality regions (as is the case for ho-
mopolymeric errors) and demands additional de-
pendencies for a standalone version of PyroTag-
ger. Therefore, we replaced LUCY with a quality-
filtering script that does not trim reads. Rather,
it removes reads that, at a given read length, have
≥3% of bases with Phred values <27 (0.2% per-base
error probability) to ensure that 97% clustering will
absorb all erroneous reads. Length-dependent data
loss using this filtering method is provided to the
user as a graph (Figure 1). We have noted that
lower quality sequencing runs may have unaccept-
ably high data loss using this stringency threshold
(>80% of reads, data not shown) and do not recom-
mend using PyroTagger with these data. However,
we have provided the user the ability to relax the
stringency of the quality filtering to rescue low qual-
ity reads with no guarantee of the resulting richness
estimates.

Length trimming. Reads are trimmed to a user-
defined uniform length. Sequences for which the per-
centage of low quality bases exceed the user-specified
threshold (see above) and sequences shorter than
the length threshold are discarded. Uniform read
lengths allow the use of faster computer algorithms
to compare sequences and avoid the problem of un-
known identity levels between non-overlapping se-
quence segments.

Dereplication. Dereplication of the length-

Figure 1: A graph of length-dependent data loss for
quality-based filtering (reads are removed with ≥3% low
quality bases (<Q27) over a given length). The green line
shows the results of the small dataset [3], and the red line
the results of the larger dataset [7]. Note the non-uniform
loss of data with length. In some instances the fraction of
low quality bases is reduced as sequence length increases
and therefore more reads pass the 3% low quality threshod.
For the larger dataset, length trimming at 225 bases (brown
line) balances the desire for using the longest comparable
region with the lowest data loss.
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trimmed reads is achieved using hashing, with se-
quences as hash keys and occurrences as hash val-
ues. This step is implemented to occur together with
length trimming but is separated here for clarity.
The non-redundant sequences are sorted and writ-
ten to an output file in the order of abundance in
the dataset, most abundant sequences first. This is
important since the following clustering stage will
assume that correct sequences are more abundant
than sequence error variants and will therefore ap-
pear earlier in the non-redundant sequence file.

Clustering. Dereplicated reads are clustered at
a 97% sequence identity threshold and the most
abundant unique sequence is used as a cluster rep-
resentative. We previously established that a 97%
threshold combined with read quality trimming pro-
duces reasonable estimates of microbial diversity [4].
Since clustering is the computational bottleneck in
the pipeline, we developed a new two-stage algo-
rithm called Pyroclust to scale with dataset size.
Most algorithms for sequence comparison either at-
tempt to find the best matching hits to a query se-
quence in a database or to find the best alignment
between two sequences. In contrast, Pyroclust only
attempts to group sequences within a user-specified
distance, which does not require finding the best
match or computing the complete pairwise align-
ment. It achieves this by taking advantage of par-
ticular properties of the pyrotag data and analysis
pipeline, specifically identical sequence length, 5’ po-
sitional homology of the reads and a high cluster-
ing threshold. The algorithm proceeds in two stages
and is summarized in Figure 2. In future releases,
we may modify or replace this algorithm to improve
performance as datasets become larger.

Classification and sample partitioning. Rep-
resentative sequences from each cluster are classified
by comparison to the greengenes [8] and silva [9]
databases for bacteria/archaea and eukaryotes re-
spectively. The full taxonomy string for each refer-
ence sequence is exported from the greengenes and
silva databases to allow taxonomic identification of
pyrotag sequences. The current version of Pyro-
Tagger uses BlastN [10] to identify the top hit and
its associated taxonomy for each 97% cluster repre-
sentative. To improve performance, BlastN is per-

formed in two stages; first a fast search using a word
length of 90, then a second slower search using a
word length of 30 for clusters lacking matches in
the first round. Classified reads are separated into
their respective samples using the barcodes provided
in the original mapping file. Putatively chimeric
clusters are identified as sequences having a best
Blast alignment <90% of the trimmed read length
to the reference database, >90% sequence identity
to the best Blast match and cluster size ≤2. This
provides a conservative estimate of chimeras in the
dataset which are particularly prevalent in lower
abundance clusters [3]. Putative chimeric clusters
are flagged in the cluster classification output files
(see below). Higher-level taxonomic information is
collated for each sample by summing the number of
reads belonging to a given phylum, excluding puta-
tively chimeric reads.

Output files. Six compressed text files are
emailed to the user: i) cluster classification.xls;
number of reads for, and classification of, each
97% cluster separated by sample, ii) clus-
ter classification percent.xls; same as output (i)
but counts are replaced by percentages, iii)
phylum classification.xls; number of reads for
each phylum separated by sample, iv) phy-
lum classification percent.xls; same as output (iii)
but counts are replaced by percentages, v) clus-
ter representatives.fasta; the most abundant unique
representative sequence for each 97% cluster and vi)
clusters2reads.txt; a full mapping of read assign-
ments to clusters. In addition, by clicking on the
provided link, users can access a log file that con-
tains metrics on the progress of their run, such as
the current stage of the pipeline execution, number
of input reads and the number of reads that pass
quality filtering.

Benchmarking. Performance benchmarking
was done on a single CPU of an AMD Opteron 2Gz
machine with 12Gb of RAM using a small artificial
community dataset of 46,341 454-FLX reads [3] and
a larger termite hindgut dataset of 229,222 454-FLX
reads [7] trimmed to 225 bp. Both datasets are avail-
able as supplementary information and at http://
pyrotagger.jgi-psf.org/sequences/. Input file
uploading times were measured for a remote DSL
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Figure 2: Pseudocode summarizing the Pyroclust algorithm. The current implementation uses words of 6 and 80 nu-
cleotides for short and long words respectively. The source code of the perl implementation of this algorithm is available
for download as part of the PyroTagger pipeline at http://pyrotagger.jgi-psf.org/release/.
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connection service (∼350 kbps).
For accuracy benchmarking, 90 reference Sanger

clone sequences, from which the small pyrotag
dataset was derived, were clustered at 97% sequence
identity to determine the actual richness and species
abundance of this artificial community dataset. This
was done using PyroTagger and a manual tree-
based method. For the PyroTagger analysis, Sanger
sequences were 5’-trimmed to E.coli position 824
and clustered with and without the pyrosequencing
reads. For the tree-based analysis, the 90 Sanger
reference sequences and 39 pyrotag cluster represen-
tatives were loaded into an ARB database [11] and
manually aligned. A 50% consensus filter was gener-
ated from the sequences comprising 163 unambigu-
ously saligned positions (to mimic the comparable
length used by PyroTagger) and a neighbor-joining
tree generated using the filter. Sequences were
then manually clustered at a 97% identity thresh-
old based on tree topology and checking uncorrected
similarities between sequences in a cluster to deter-
mine richness and abundance of the dataset. Note
that the 90 clones were mixed at different concen-
trations to mimic a natural community and there-
fore weighting was applied to the clone sequences to
determine actual abundances. The ARB database
is available at http://pyrotagger.jgi-psf.org/
sequences/quince.

3 Results and Discussion

Performance. The performance of different mod-
ules of the PyroTagger pipeline for two samples of
differing size and species richness is overviewed in
Figure 3. The input file uploading, preprocessing,
quality filtering and length trimming scale linearly
with dataset size (O(n) complexity). The complex-
ity of the dereplication step also is O(n) because
it uses hashing and is mostly limited by disk opera-
tions (reading and writing) typically only taking sec-
onds, even for datasets comprising millions of reads.
For example, it takes 4 seconds to dereplicate the
229,222 read dataset on a single AMD 64-bit pro-
cessor (Figure 3).

The computational bottleneck in the pipeline is

Figure 3: Performance benchmarking of the major Pyro-
tagger modules on two 454-FLX pyrotag datasets trimmed
to 225 bp. The larger dataset [7] has 5X more reads and
10X more 97% clusters than the smaller dataset [3].
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the sequence comparisons required for clustering.
To address this bottleneck, we developed a 2-stage
clustering algorithm, Pyroclust, which avoids most
pairwise sequence comparisons (Figure 2). The
complexity of the Pyroclust algorithm depends on
the number of initial sequences N, number of clus-
ters C, sequence length L and a permissible num-
ber of mismatches M. In the first coarse clustering
stage of the algorithm, the worst case scenario is
that every sequence is aligned to every cluster, cre-
ating O(NCLM) complexity. However, in practice
most sequences are not aligned or aligned only to a
small number of clusters, nearing O(NLM) complex-
ity. The reason for this is twofold; i) most sequences
do not share long words and thus will not be di-
rectly compared to each other, and ii) once a match
is found, the query sequence is recruited to a cluster
and only the cluster centroid will be compared from
this point on. This results in approximately linear
scaling by dataset size. Although the larger dataset
is 5X as large as the smaller dataset tested, the pro-
cessing time for stage 1 was only ∼2X longer for the
larger dataset (Figure 3).

In the second fine clustering stage, every coarse
cluster must be aligned to all others, adding
O(C2LM) complexity. Therefore, the running time
of stage 2 is highly dependent on the cluster (species)
richness of the sample. For species-rich samples
where C is high, stage 2 may become more computa-
tionally intensive than stage 1. For the two datasets
tested, stage 2 times were substantially shorter than
stage 1 (Figure 3) because cluster richness was
moderate in both cases.

The final classification and sample partitioning
module uses Blast and like the initial steps, does
not impact performance, typically taking two min-
utes against the greengenes and silva databases.

The performance outlook for PyroTagger looks
sound at least in the near term as it can analyze
millions of reads (N) with a comparable length of up
to 450 bp (L) in a few hours on a single CPU (data
not shown). However, as the sequencing technolo-
gies continue to improve, both N and L will increase
and the performance of PyroTagger will need to be
reevaluated.

Accuracy. Classification accuracy has been ex-
tensively addressed elsewhere [12]. To test the
accuracy of cluster richness and abundance esti-
mates, we used the reference dataset of Quince et
al [3]. This is the 46,341 454-FLX read dataset
also used for performance testing (above), which
was obtained by sequencing a non-equimolar mix of
90 rRNA clones. Accuracy was determined by co-
analyzing the Sanger reference and pyrotag datasets
with PyroTagger to ensure comparability of clus-
ters. The cluster richness and abundance of the
Sanger clones was independently verified using a
tree-based assessment of clusters (ARB database
is available at http://pyrotagger.jgi-psf.org/
sequences/quince) with weighting applied to ac-
count for the variable clone concentrations in the
mixture. The PyroTagger and tree-based analysis
produced 34 and 35 clusters respectively from the 90
reference clones using a 97% identity threshold. Py-
roTagger analysis of the 46,341 pyrotags produced
a richness estimate of 39 clusters of which 34 had
matches to Sanger sequences according to the more
accurate tree-based method (Figure 4). Of the 5
clusters with no Sanger match, three were manually
verified chimeras that eluded the chimera detection
script, and the other two were the result of cluster
splitting of borderline cases. No spurious clusters
due to low quality sequences were produced indi-
cating that the quality filtering step is efficient. In
future versions of PyroTagger we will explore the
possibility of refining the chimera detection compo-
nent of the pipeline. The abundance estimates of
the weighted Sanger and pyrotag datasets were con-
sistent with abundant and rare ’populations’ being
correlated (R2=0.966; Figure 4) and therefore Py-
roTagger provides a sound prediction of abundance
distribution in this artificial community.

In summary, PyroTagger will quickly and accu-
rately analyze amplicon pyrosequencing datasets up
to at least hundreds of thousands of reads on a sin-
gle processor. PyroTagger is not region-specific and
can be used on any amplified segment of the SSU
rRNA gene. It also can be used on other highly con-
served genes, such as large subunit rRNAs, provided
an appropriate reference database is supplied. The
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Figure 4: Rank abundance plots of 97% clusters pro-
duced from 454-FLX data (blue) and 90 associated ref-
erence Sanger sequences (red).

program is available as a web-based application at
http://pyrotagger.jgi-psf.org/ and the source
code can be downloaded from http://pyrotagger.
jgi-psf.org/release/.
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